Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Res Int ; 169: 112745, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37254374

RESUMO

Soy beverage is a rich source of phytoestrogens isoflavones, with potential benefits on health. The effect of those compounds depends greatly on their bacterial metabolization into their aglycone forms. This study evaluated the health effects of two soy beverages, non-fermented (SB) and fermented with Bifidobacterium pseudocatenulatum INIA P815 (FSB), in acyclic and cyclic C57BL/6J aged female mice as a model of menopause and premenopause, respectively. SB and FSB treatments were administrated for 36 days and, subsequently, body weight, lipid and inflammatory profile and fertility were analyzed and compared. In addition, hepatic gene expression and faecal microbiota composition were also assessed. After fermentation, FSB presented a high content in the aglycones daidzein and genistein and a higher antioxidant activity. FSB treated cyclic mice showed a significant increase in the number of retrieved oocytes and zigotes. Differences in serum lipids were observed in triglycerides, which were lower in FSB than in SB groups. None of the treatments influenced the inflammatory profile or caused a dramatic change in the intestinal microbiota profile or hepatic gene expression in any of the groups. Our data showed that FSB provided greater health benefits than SB in lipid profile and fertility in cyclic mice. These beneficial effects could be attributed to the fermentation process, which produces more bioavailable and bioactive compounds, achieving a greater impact on health.


Assuntos
Leite de Soja , Feminino , Animais , Camundongos , Leite de Soja/metabolismo , Camundongos Endogâmicos C57BL , Genisteína/farmacologia , Bebidas , Lipídeos
2.
PLoS Comput Biol ; 17(12): e1009051, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34879058

RESUMO

Projection neurons are the commonest neuronal type in the mammalian forebrain and their individual characterization is a crucial step to understand how neural circuitry operates. These cells have an axon whose arborizations extend over long distances, branching in complex patterns and/or in multiple brain regions. Axon length is a principal estimate of the functional impact of the neuron, as it directly correlates with the number of synapses formed by the axon in its target regions; however, its measurement by direct 3D axonal tracing is a slow and labor-intensive method. On the contrary, axon length estimations have been recently proposed as an effective and accessible alternative, allowing a fast approach to the functional significance of the single neuron. Here, we analyze the accuracy and efficiency of the most used length estimation tools-design-based stereology by virtual planes or spheres, and mathematical correction of the 2D projected-axon length-in contrast with direct measurement, to quantify individual axon length. To this end, we computationally simulated each tool, applied them over a dataset of 951 3D-reconstructed axons (from NeuroMorpho.org), and compared the generated length values with their 3D reconstruction counterparts. The evaluated reliability of each axon length estimation method was then balanced with the required human effort, experience and know-how, and economic affordability. Subsequently, computational results were contrasted with measurements performed on actual brain tissue sections. We show that the plane-based stereological method balances acceptable errors (~5%) with robustness to biases, whereas the projection-based method, despite its accuracy, is prone to inherent biases when implemented in the laboratory. This work, therefore, aims to provide a constructive benchmark to help guide the selection of the most efficient method for measuring specific axonal morphologies according to the particular circumstances of the conducted research.


Assuntos
Axônios/fisiologia , Biologia Computacional/métodos , Imageamento Tridimensional/métodos , Neurônios/citologia , Animais , Benchmarking , Bases de Dados Factuais , Camundongos , Tomografia
4.
J Adv Res ; 28: 111-125, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33364049

RESUMO

INTRODUCTION: The human brain has evolved under the constraint of survival in complex dynamic situations. It makes fast and reliable decisions based on internal representations of the environment. Whereas neural mechanisms involved in the internal representation of space are becoming known, entire spatiotemporal cognition remains a challenge. Growing experimental evidence suggests that brain mechanisms devoted to spatial cognition may also participate in spatiotemporal information processing. OBJECTIVES: The time compaction hypothesis postulates that the brain represents both static and dynamic situations as purely static maps. Such an internal reduction of the external complexity allows humans to process time-changing situations in real-time efficiently. According to time compaction, there may be a deep inner similarity between the representation of conventional static and dynamic visual stimuli. Here, we test the hypothesis and report the first experimental evidence of time compaction in humans. METHODS: We engaged human subjects in a discrimination-learning task consisting in the classification of static and dynamic visual stimuli. When there was a hidden correspondence between static and dynamic stimuli due to time compaction, the learning performance was expected to be modulated. We studied such a modulation experimentally and by a computational model. RESULTS: The collected data validated the predicted learning modulation and confirmed that time compaction is a salient cognitive strategy adopted by the human brain to process time-changing situations. Mathematical modelling supported the finding. We also revealed that men are more prone to exploit time compaction in accordance with the context of the hypothesis as a cognitive basis for survival. CONCLUSIONS: The static internal representation of dynamic situations is a human cognitive mechanism involved in decision-making and strategy planning to cope with time-changing environments. The finding opens a new venue to understand how humans efficiently interact with our dynamic world and thrive in nature.

5.
Front Neurorobot ; 14: 4, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32116635

RESUMO

Evolved living beings can anticipate the consequences of their actions in complex multilevel dynamic situations. This ability relies on abstracting the meaning of an action. The underlying brain mechanisms of such semantic processing of information are poorly understood. Here we show how our novel concept, known as time compaction, provides a natural way of representing semantic knowledge of actions in time-changing situations. As a testbed, we model a fencing scenario with a subject deciding between attack and defense strategies. The semantic content of each action in terms of lethality, versatility, and imminence is then structured as a spatial (static) map representing a particular fencing (dynamic) situation. The model allows deploying a variety of cognitive strategies in a fast and reliable way. We validate the approach in virtual reality and by using a real humanoid robot.

6.
Microb Ecol ; 79(4): 882-897, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31796996

RESUMO

Rain fed granite rock basins are ancient geological landforms of worldwide distribution and structural simplicity. They support habitats that can switch quickly from terrestrial to aquatic along the year. Diversity of animals and plants, and the connexion between communities in different basins have been widely explored in these habitats, but hardly any research has been carried out on microorganisms. The aim of this study is to provide the first insights on the diversity of eukaryotic microbial communities from these environments. Due to the ephemeral nature of these aquatic environments, we predict that the granitic basins should host a high proportion of dormant microeukaryotes. Based on an environmental DNA diversity survey, we reveal diverse communities with representatives of all major eukaryotic taxonomic supergroups, mainly composed of a diverse pool of low abundance OTUs. Basin communities were very distinctive, with alpha and beta diversity patterns non-related to basin size or spatial distance respectively. Dissimilarity between basins was mainly characterised by turnover of OTUs. The strong microbial eukaryotic heterogeneity observed among the basins may be explained by a complex combination of deterministic factors (diverging environment in the basins), spatial constraints, and randomness including founder effects. Most interestingly, communities contain organisms that cannot coexist at the same time because of incompatible metabolic requirements, thus suggesting the existence of a pool of dormant organisms whose activity varies along with the changing environment. These organisms accumulate in the pools, which turns granitic rock into high biodiversity microbial islands whose conservation and study deserve further attention.


Assuntos
Eucariotos/fisiologia , Sedimentos Geológicos/microbiologia , Sedimentos Geológicos/parasitologia , Dióxido de Silício , Eucariotos/isolamento & purificação , Microbiota , Micobioma , Chuva , Espanha
7.
Microb Ecol ; 80(1): 248, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31873774

RESUMO

The original version of this article contained an erratum of omission in the Acknowledgments section.

8.
Int J Food Sci Nutr ; 69(3): 334-343, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-28728453

RESUMO

Phytoestrogens are plant-derived polyphenols with structural and functional similarities to mammalian oestrogens. The aim of this work was to study the metabolism of phytoestrogens by children's intestinal microbiota and to compare it with previous results in adults. Faecal samples of 24 healthy children were subjected to phytoestrogen fermentation assay. Only one child produced equol, while O-desmethylangolensin was found in all. Urolithin production was detected in 14 children and enterolactone in 10. Further comparison with the metabolism of phytoestrogens by adult intestinal microbiota reflected that glycitein, dihydrogenistein, urolithins D and E, enterolactone, secoisolariciresinol and arctigenin were the most important metabolites differentiating between adult and child microbial gut metabolism. Although the child intestinal microbiota showed the ability to metabolise isoflavones, ellagitannins and lignans to a certain extent, it generally showed a reduced metabolism of phytoestrogens, with a lack of 5-hydroxy equol and enterodiol, and less urolithins and enterolactone producers.


Assuntos
Microbioma Gastrointestinal , Fitoestrógenos/metabolismo , 4-Butirolactona/análogos & derivados , 4-Butirolactona/metabolismo , Adulto , Butileno Glicóis/metabolismo , Estudos de Casos e Controles , Pré-Escolar , Cumarínicos/metabolismo , Equol/metabolismo , Fezes/microbiologia , Feminino , Furanos/metabolismo , Humanos , Taninos Hidrolisáveis/metabolismo , Lactente , Isoflavonas/metabolismo , Lignanas/metabolismo , Masculino , Polifenóis/metabolismo
9.
Molecules ; 21(8)2016 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-27517891

RESUMO

Phytoestrogens are plant-derived polyphenols with a structure similar to human estrogens. The three main groups of phytoestrogens, isoflavones, ellagitannins, and lignans, are transformed into equol, urolithins, and enterolignans, respectively, by bacteria. These metabolites have more estrogenic/antiestrogenic and antioxidant activities than their precursors, and they are more bioavailable. The aim of this study was to analyze the metabolism of isoflavones, lignans and ellagitannins by gut microbiota, and to study the possible correlation in the metabolism of these three groups of phytoestrogens. In vitro fermentation experiments were performed with feces samples from 14 healthy adult volunteers, and metabolite formation was measured by HPLC-PAD and HPLC-ESI/MS. Only the microbiota of one subject produced equol, while most of them showed production of O-desmethylangolensin (O-DMA). Significant inter-subject differences were observed in the metabolism of dihydrodaidzein and dihydrogenistein, while the glucoside isoflavones and their aglycones showed less variability, except for glycitin. Most subjects produced urolithins M-5 and E. Urolithin D was not detected, while uroltithin B was found in half of the individuals analyzed, and urolithins A and C were detected in two and four subjects, respectively. Enterolactone was found in all subjects, while enterodiol only appeared in five. Isoflavone metabolism could be correlated with the metabolism of lignans and ellagitannins. However, the metabolism of ellagitannins and lignans could not be correlated. This the first study where the metabolism of the three groups together of phytoestrogen, isoflavones, lignans, and ellagitannins by gut microbiota is analyzed.


Assuntos
Cumarínicos/metabolismo , Microbioma Gastrointestinal/fisiologia , Taninos Hidrolisáveis/metabolismo , Isoflavonas/metabolismo , Lignanas/metabolismo , Fitoestrógenos/metabolismo , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
10.
Front Comput Neurosci ; 9: 144, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26648863

RESUMO

Synchronization is one of the central phenomena involved in information processing in living systems. It is known that the nervous system requires the coordinated activity of both local and distant neural populations. Such an interplay allows to merge different information modalities in a whole processing supporting high-level mental skills as understanding, memory, abstraction, etc. Though, the biological processes underlying synchronization in the brain are not fully understood there have been reported a variety of mechanisms supporting different types of synchronization both at theoretical and experimental level. One of the more intriguing of these phenomena is the anticipating synchronization, which has been recently reported in a pair of unidirectionally coupled artificial neurons under simple conditions (Pyragiene and Pyragas, 2013), where the slave neuron is able to anticipate in time the behavior of the master one. In this paper, we explore the effect of spike anticipation over the information processing performed by a neural network at functional and structural level. We show that the introduction of intermediary neurons in the network enhances spike anticipation and analyse how these variations in spike anticipation can significantly change the firing regime of the neural network according to its functional and structural properties. In addition we show that the interspike interval (ISI), one of the main features of the neural response associated with the information coding, can be closely related to spike anticipation by each spike, and how synaptic plasticity can be modulated through that relationship. This study has been performed through numerical simulation of a coupled system of Hindmarsh-Rose neurons.

11.
Biotechnol Lett ; 37(7): 1405-13, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25778800

RESUMO

OBJECTIVES: To determine the effectiveness of evoglow-Pp1 as a reporter to study gene expression in bifidobacteria. To choose a strong and constitutive promoter to track fluorescently labelled bifidobacteria in environments under anaerobic conditions. RESULTS: The elongation factor P (EF-P) promoter from Bifidobacterium longum CECT 4551 produced the highest emission of fluorescence signal and was therefore able to produce the highest gene expression of the promoters studied. The promoters from B. longum CECT 4551 showed different fluorescence signal intensities which, in descending order, were: EF-P, initiation factor IF-2, elongation factor G, elongation factor Tu, elongation factor Nus A, elongation factor Ts and 30S ribosomal protein S12. CONCLUSIONS: The consistency of the methods employed (fluorescence imaging system, fluorescence microscopy, fluorimetry and flow cytometry) showed that the construction pNZ:Prom.GFPana contained the anaerobic fluorescent protein evoglow-Pp1 could be exploited as a tool for analysing the gene expression in bifidobacteria strains.


Assuntos
Bifidobacterium/genética , Regulação Bacteriana da Expressão Gênica/genética , Genes Reporter/genética , Proteínas de Fluorescência Verde/metabolismo , Regiões Promotoras Genéticas/genética , Anaerobiose , Bifidobacterium/metabolismo , Proteínas de Fluorescência Verde/genética , Fatores de Alongamento de Peptídeos/genética
12.
Front Cell Neurosci ; 7: 79, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23761732

RESUMO

TONIC (SLOWLY ADAPTING) AND PHASIC (RAPIDLY ADAPTING) PRIMARY AFFERENTS CONVEY COMPLEMENTARY ASPECTS OF HAPTIC INFORMATION TO THE CENTRAL NERVOUS SYSTEM: object location and texture the former, shape the latter. Tonic and phasic neural responses are also recorded in all relay stations of the somatosensory pathway, yet it is unknown their role in both, information processing and information transmission to the cortex: we don't know if tonic and phasic neurons process complementary aspects of haptic information and/or if these two types constitute two separate channels that convey complementary aspects of tactile information to the cortex. Here we propose to elucidate these two questions in the fast trigeminal pathway of the rat (PrV-VPM: principal trigeminal nucleus-ventroposteromedial thalamic nucleus). We analyze early and global behavior, latencies and stability of the responses of individual cells in PrV and medial lemniscus under 1-40 Hz stimulation of the whiskers in control and decorticated animals and we use stochastic spiking models and extensive simulations. Our results strongly suggest that in the first relay station of the somatosensory system (PrV): (1) tonic and phasic neurons process complementary aspects of whisker-related tactile information (2) tonic and phasic responses are not originated from two different types of neurons (3) the two responses are generated by the differential action of the somatosensory cortex on a unique type of PrV cell (4) tonic and phasic neurons do not belong to two different channels for the transmission of tactile information to the thalamus (5) trigeminothalamic transmission is exclusively performed by tonically firing neurons and (6) all aspects of haptic information are coded into low-pass, band-pass, and high-pass filtering profiles of tonically firing neurons. Our results are important for both, basic research on neural circuits and information processing, and development of sensory neuroprostheses.

13.
Eur J Neurosci ; 36(12): 3679-90, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23006217

RESUMO

The structure and function of the central nervous system strongly depend on the organization and efficacy of the incoming sensory input. A disruption of somesthetic input severely alters the metabolic activity, electrophysiological properties and even gross anatomical features of the primary somatosensory cortex. Here we examined, in the rat somatosensory cortex, the neuroprotective and therapeutic effects of artificial sensory stimulation after irreversible unilateral transection of a peripheral sensory nerve (the infraorbital branch of the trigeminal nerve). The proximal stump of the nerve was inserted into a silicon tube with stimulating electrodes, through which continuous electrical stimulation was applied for 12 h/day (square pulses of 100 µs, 3.0 V, at 20 Hz) for 4 weeks. Deafferented animals showed significant decreases in cortical evoked potentials, cytochrome oxidase staining intensity (layers II-IV), cortical volume (layer IV) and number of parvalbumin-expressing (layers II-IV) and calbindin-D28k-expressing (layers II/III) interneurons. These deafferentation-dependent effects were largely absent in the nerve-stimulated animals. Together, these results provide evidence that chronic electrical stimulation has a neuroprotective and preservative effect on the sensory cortex, and raise the possibility that, by controlling the physical parameters of an artificial sensory input to a sectioned peripheral nerve, chronically deafferented brain regions could be maintained at near-'normal' conditions. Our findings could be important for the design of sensory neuroprostheses and for therapeutic purposes in brain lesions or neural degenerative processes.


Assuntos
Estimulação Elétrica , Córtex Somatossensorial/fisiopatologia , Nervo Trigêmeo/fisiopatologia , Animais , Calbindina 1 , Calbindinas , Denervação , Complexo IV da Cadeia de Transporte de Elétrons/análise , Potenciais Evocados , Feminino , Interneurônios/patologia , Interneurônios/fisiologia , Parvalbuminas/análise , Ratos , Ratos Wistar , Proteína G de Ligação ao Cálcio S100/análise , Córtex Somatossensorial/química , Córtex Somatossensorial/patologia , Nervo Trigêmeo/cirurgia
14.
Front Neurosci ; 5: 84, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21779233

RESUMO

UNLABELLED: Most work on visual prostheses has centered on developing retinal or cortical devices. However, when retinal implants are not feasible, neuroprostheses could be implanted in the lateral geniculate nucleus (LGN) of the thalamus, the intermediate relay station of visual information from the retina to the visual cortex (V1). The objective of the present study was to determine the types of artificial stimuli that when delivered to the visual thalamus can generate reliable responses of the cortical neurons similar to those obtained when the eye perceives a visual image. Visual stimuli {S(i)} were presented to one eye of an experimental animal and both, the thalamic {RTh(i)} and cortical responses {RV1(i)} to such stimuli were recorded. Electrical patterns {RTh(i)*} resembling {RTh(i)} were then injected into the visual thalamus to obtain cortical responses {RV1(i)*} similar to {RV1(i)}. Visually- and electrically generated V1 responses were compared. RESULTS: During the course of this work we: (i) characterized the response of V1 neurons to visual stimuli according to response magnitude, duration, spiking rate, and the distribution of interspike intervals; (ii) experimentally tested the dependence of V1 responses on stimulation parameters such as intensity, frequency, duration, etc., and determined the ranges of these parameters generating the desired cortical activity; (iii) identified similarities between responses of V1 useful to compare the naturally and artificially generated neuronal activity of V1; and (iv) by modifying the stimulation parameters, we generated artificial V1 responses similar to those elicited by visual stimuli. Generation of predictable and consistent phosphenes by means of artificial stimulation of the LGN is important for the feasibility of visual prostheses. Here we proved that electrical stimuli to the LGN can generate V1 neural responses that resemble those elicited by natural visual stimuli.

15.
J Neural Eng ; 8(4): 046008, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21628770

RESUMO

In this work we address the use of realtime cortical recordings for the generation of coherent, reliable and robust motor activity in spinal-lesioned animals through selective intraspinal microstimulation (ISMS). The spinal cord of adult rats was hemisectioned and groups of multielectrodes were implanted in both the central nervous system (CNS) and the spinal cord below the lesion level to establish a neural system interface (NSI). To test the reliability of this new NSI connection, highly repeatable neural responses recorded from the CNS were used as a pattern generator of an open-loop control strategy for selective ISMS of the spinal motoneurons. Our experimental procedure avoided the spontaneous non-controlled and non-repeatable neural activity that could have generated spurious ISMS and the consequent undesired muscle contractions. Combinations of complex CNS patterns generated precisely coordinated, reliable and robust motor actions.


Assuntos
Encéfalo/fisiologia , Estimulação Elétrica/métodos , Traumatismos da Medula Espinal/reabilitação , Medula Espinal/fisiologia , Interface Usuário-Computador , Estimulação Acústica , Animais , Eletrodos Implantados , Eletromiografia , Retroalimentação , Feminino , Masculino , Córtex Motor/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Vias Neurais/citologia , Vias Neurais/fisiologia , Ratos , Ratos Wistar , Tato/fisiologia , Vibrissas/inervação , Vibrissas/fisiologia , Visão Ocular/fisiologia
16.
Artigo em Inglês | MEDLINE | ID: mdl-21096028

RESUMO

Any manipulation to natural sensory input has direct effects on the morphology and physiology of the Central Nervous System. In the particular case of amputations, sensory areas of the brain undergo degenerative processes with a marked reduction in neuronal activity and global disinhibition. This is probably due to a deregulation of the circuits devoted to the control of the cortical activity. These changes are detected in the organization of the representational maps, the metabolic labeling by 2-deoxyglucose or cytochrome oxidase, the density of afferent and efferent axonal connections and the reduced expression of inhibitory neurotransmitters. In the present study, performed in animals, we have evaluated the therapeutic potential of Brain Machine Interfaces in reversing or limiting the degenerative/deregulation processes of amputations. Applying electrical stimulation on amputated peripheral nerves, we have achieved to maintain in approximately normal values 1) the cortical activity and 2) the expression of GABA-associated molecules of the inhibitory interneurons of the primary somatosensory cortex.


Assuntos
Vias Aferentes/cirurgia , Nervos Periféricos/cirurgia , Córtex Somatossensorial/patologia , Córtex Somatossensorial/cirurgia , Vias Aferentes/patologia , Amputação Cirúrgica , Animais , Calbindinas , Estimulação Elétrica , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Implantes Experimentais , Parvalbuminas/metabolismo , Ratos , Ratos Wistar , Proteína G de Ligação ao Cálcio S100/metabolismo
17.
Neuroreport ; 16(14): 1569-73, 2005 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-16148747

RESUMO

The present study was designed to compare the electrophysiological characteristics of the principalis, oralis and interpolaris nuclei of the trigeminal sensory complex under stimulation of the vibrissae by air puffs. This stimulus generates deflection profiles resembling those induced by contact with real objects in natural conditions. Three populations of neurons were identified in each nucleus according to their mean spiking frequency at rest. The three nuclei differed in terms of their mean spiking frequencies, the response latencies of their neurons and the proportions of each neuron population observed in single and multi-unit recordings. Findings suggest different information processing tasks for each nucleus.


Assuntos
Movimento/fisiologia , Neurônios/fisiologia , Núcleos do Trigêmeo/citologia , Vibrissas/inervação , Vibrissas/fisiologia , Potenciais de Ação/fisiologia , Ar , Animais , Eletrofisiologia , Feminino , Masculino , Neurônios/classificação , Estimulação Física/métodos , Ratos , Ratos Wistar , Tempo de Reação/fisiologia
18.
J Physiol ; 545(1): 51-63, 2002 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-12433949

RESUMO

Analysis of the cholinergic regulation of glutamatergic neurotransmission is an essential step in understanding the hippocampus because it can influence forms of synaptic plasticity that are thought to underlie learning and memory. We studied in vitro the cholinergic regulation of excitatory postsynaptic currents (EPSCs) evoked in rat CA1 pyramidal neurons by Schaffer collateral (SC) stimulation. Using "minimal" stimulation, which activates one or very few synapses, the cholinergic agonist carbamylcholine (CCh) increased the failure rate of functional more (36 %) than of silent synapses (7 %), without changes in the EPSC amplitude. These effects of CCh were insensitive to manipulations that increased the probability of release, such as paired pulse facilitation, increases in temperature and increases in the extracellular Ca(2+) : Mg(2+) ratio. Using "conventional" stimulation, which activates a large number of synapses, CCh inhibited more the pharmacologically isolated non-NMDA (86 %) than the NMDA (47 %) EPSC. The changes in failure rate, EPSC variance and the increased paired pulse facilitation that paralleled the inhibition imply that CCh decreased release probability. Muscarine had similar effects. The inhibition by both CCh and by muscarine was prevented by atropine. We conclude that CCh reduces the non-NMDA component of SC EPSCs by selectively inhibiting transmitter release at functional synapses via activation of muscarinic receptors. The results suggest that SCs have two types of terminals, one in functional synapses, selectively sensitive to regulation through activation of muscarinic receptors, and the other in silent synapses less sensitive to that regulation. The specific inhibition of functional synapses would favour activity-dependent plastic phenomena through NMDA receptors at silent synapses without the activation of non-NMDA receptors and functional synapses.


Assuntos
Ácido Glutâmico/metabolismo , Hipocampo/fisiologia , Células Piramidais/fisiologia , Receptores Muscarínicos/fisiologia , Sinapses/fisiologia , Adenosina/farmacologia , Animais , Carbacol/farmacologia , Agonistas Colinérgicos/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Técnicas In Vitro , N-Metilaspartato/fisiologia , Inibição Neural , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/fisiologia , Ratos , Ratos Wistar , Sinapses/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...